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1. Background on flows

1.1. General terminology. LetM be a metrizable topological space
and ϕt :M→M a continuous flow defined for all t ∈ R which has no
fixed points.

Definition 1.1.

• The non-wandering set NW(ϕt) of the flow ϕt is the set of all
points x ∈M for which there are sequences xN → x inM and
tN → +∞ in R such that ϕtN (xN)→ x.

• The set P(ϕt) of periodic points of the flow ϕt consists of all
points x ∈M for which there exists T > 0 with ϕT (x) = x.

Note that these sets are ϕt-invariant and P(ϕt) ⊂ NW(ϕt).

Definition 1.2. Let S ⊂M be a ϕt-invariant set and E a continuous
vector bundle over S equipped with a continuous flow ϕtE : E → E
lifting ϕt over S and a continuous bundle norm ∥·∥. Then ϕtE is uni-
formly contracting (resp. expanding) on E with respect to ∥·∥ if there
are constants C, c > 0 such that for all p ∈ S and all v ∈ Ep one has∥∥ϕtE(v)∥∥ϕt(p)

≤ Ce−c|t| ∥v∥p

for all t ≥ 0 (resp. t ≤ 0).

Definition 1.3. Suppose that M is a Riemannian manifold and ϕt

a C1-flow with generating vector field X : M → TM. Then a ϕt-
invariant set S ⊂ M is called hyperbolic for ϕt if TM|S admits a
Whitney sum decomposition

TM|S = E0 ⊕ Es ⊕ Eu,
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where E0
p = RX(p) for all p ∈ S and Es, Eu are dϕt-invariant contin-

uous subbundles such that dϕt is uniformly contracting (resp. expand-
ing) on Es (resp. Eu) with respect to the Riemannian norm.

1.2. Anosov flows.

Definition 1.4. A C1-flow ϕt on a Riemannian manifold M is an
Anosov flow if the entire manifoldM is hyperbolic for ϕt.

Remark 1.1. In the literature one often restricts to compact manifolds
in the above definition; there seems to be no universal convention.

Theorem 1 (Anosov 1967). Suppose that ϕt is an Anosov flow on a
compact Riemannian manifold. Then:

(1) P(ϕt) = NW(ϕt);

(2) If ϕt preserves a measure that is locally absolutely continuous
with respect to Lebesgue measure, then ϕt is ergodic with respect
to this measure, i.e., every ϕt-invariant measurable subset S ⊂
M satisfies either vol(S) = vol(M) or vol(S) = 0;

Theorem 2 (Anosov 1967, Moser 1969, Robbin 1971). Suppose that ϕt

is an Anosov flow on a compact Riemannian manifoldM with generat-
ing vector field X. Then the dynamical system (M, ϕt) is structurally
stable, i.e., for every ε > 0 there is a δ > 0 such that for every vec-
tor field X ′ on M with ∥X −X ′∥C1 < δ there is a homeomorphism
h :M→M such that

(1) dist(p, h(p)) < ε for all p ∈M;

(2) h intertwines the oriented orbits of ϕt with the oriented orbits
of the flow (ϕ′)t generated by X ′.

Example 1.5. (1) The geodesic flow on the unit tangent bundle of
a negatively curved closed Riemannian manifold is Anosov.

(2) Let X = Γ\G/K be a locally symmetric space of rank one and
fix an Iwasawa decomposition G = KAN . The unit tangent
bundle of X can we written as

S1X = Γ\G/M,
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where M = ZK(A) ⊂ K is compact. The geodesic flow ϕt on
S1X is the action of A ∼= R induced by right multiplication.
Recall the Bruhat decomposition

g = m⊕ a⊕ n⊕ θn,

where g = Lie(G), m = Lie(M), a = Lie(A), n = Lie(N), and
θ : g→ g is the Cartan involution definingK. EquippingG with
a left-G-invariant and right-M -invariant metric, S1X becomes a
Riemannian manifold and the Bruhat decomposition induces a
splitting

T (S1X) = (Γ\G× a)⊕ (Γ\G×Ad(M) n)⊕ (Γ\G×Ad(M) θn).

Since for any non-zero element X ∈ a+ and any Y ∈ gα with
α ∈ Σ(g, a) we have

Ad(etX)Y = etα(X)Y

and
n =

⊕
α∈Σ+

gα, θn =
⊕
−α∈Σ+

gα,

we see that the above splitting makes S1X hyperbolic for ϕt and
thus ϕt is an Anosov flow.

1.3. Axiom A flows.

Definition 1.6. A smooth flow ϕt on a manifold M is an Axiom A
flow if it has the following properties:

(1) NW(ϕt) is compact;

(2) NW(ϕt) is hyperbolic for ϕt with respect to some (hence any)
continuous norm on TM|NW(ϕt);

(3) P(ϕt) = NW(ϕt).

Example 1.7. Let X = Γ\G/K be a convex-cocompact locally sym-
metric space of rank one. Then the geodesic flow on S1X = Γ\G/M
(with the notation as in Example 1.5) is an Axiom A flow.



4 B. DELARUE

Definition 1.8. A compact ϕt-invariant set K ⊂M is locally maximal
for the flow ϕt if there is a neighborhood U ⊂M of K such that

K =
⋂
t∈R

ϕt(U).

Definition 1.9. A hyperbolic set K for the flow ϕt is basic if it is
locally maximal for ϕt, the flow ϕt|K is topologically transitive (i.e.,
K contains a dense ϕt-orbit), and K is the closure inM of the set of
periodic points of ϕt|K.

Theorem 3 (“Spectral decomposition” of the non-wandering set, Smale
1967). If ϕt is an Axiom A flow, then its non-wandering set is a finite
disjoint union of basic hyperbolic sets.

1.4. Gromov flow spaces. The following definition generalizes the
concept of the geodesic flow on the unit tangent bundle of a compact
negatively curved Riemannian manifold, motivated by the fact that
the fundamental group of such a manifold is hyperbolic.

Definition 1.10 ([Gro87, Sec. 8.3], [Min05, Thm. 60]). A Gromov-

geodesic flow of Γ is a proper hyperbolic metric space Γ̂ endowed with a
fixed-point free flow (Φt)t∈R, an isometric involution ι, and an isometric
Γ-action with the following properties:

(1) The Γ-action commutes with ι and Φt.

(2) The involution ι anti-commutes with Φt, i.e., ι ◦ Φt = Φ−t ◦ ι.

(3) The orbit maps Γ → Γ̂ are quasi-isometries. In particular, the

Γ-action on Γ̂ is properly discontinuous and cocompact, and
there is a homeomorphism ∂∞Γ̂ ∼= ∂∞Γ. The latter is canonical
in the sense that it is independent of the choice of the Γ-orbit.

(4) The orbit maps R → Γ̂ of the flow Φt are quasi-isometric em-
beddings.
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(5) The map

τ : Γ̂ −→ ∂∞Γ
(2) = ∂∞Γ̂

(2)

x 7−→
(

lim
t→−∞

Φt(x)︸ ︷︷ ︸
=:τ+(x)

, lim
t→+∞

Φ−t(x)︸ ︷︷ ︸
=:τ−(x)

)

induces a homeomorphism

Γ̂/R ∼= ∂∞Γ
(2).

By [Gro87, Thm. 8.3.C] there exists a Gromov-geodesic flow of Γ.
More details see [Min05, pp. 405–406].

Example 1.11. Let Γ = π1(M) be the fundamental group of a com-
pact negatively curved Riemannian manifold M . Then the unit tan-

gent bundle M̃ := S1M̃ ⊂ TM̃ of the universal cover M̃ of M ,
equipped with the lifted geodesic flow Φt = φ̃t, the Γ-action given
by the derivatives of the Deck transformations, and the involution
ι(x, v) := (x,−v) is a Gromov flow space of Γ.

2. Anosov representations

Let G be a non-compact connected semisimple real Lie group with
finite center.

2.1. Rank one convex-cocompactness. Suppose that rk(G) = 1,
i.e., dimA = 1 in an Iwasawa decomposition G = KAN . Geometri-
cally, the maximal flats in the Riemannian symmetric space

X̃ := G/K

are 1-dimensional. Consider a discrete subgroup Γ ⊂ G and put

X := Γ\X̃.

Γ discrete, K compact =⇒ Γ acts properly discontinuously on G/K.
So X is a smooth manifold if Γ is torsion-free and an orbifold otherwise.
We have the limit set

∆Γ := {accumulation points of Γ-orbits} ⊂ ∂∞X,
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the description

∂∞X = G/P, P =MAN, M = ZK(A),

and the unit tangent bundle (in the orbifold sense if Γ has torsion)
with the geodesic flow

T 1X = Γ\G/M, ϕt(ΓgM) := ΓgetXM,

where X ∈ a+ ⊂ a = Lie(A) with ∥X∥ = 1, and its non-wandering set

NW(ϕt) ⊂ Γ\G/M.

Again: Γ discrete, M compact =⇒ Γ acts properly disc. on G/M .

Theorem 4 (C.f. [Kas13]). The following statements are equivalent:

(1) There exists a non-empty Γ-invariant convex set S ⊂ X̃ on
which Γ acts cocompactly;

(2) Γ acts cocompactly on the convex hull Conv(ΛΓ) ⊂ X̃;

(3) The closure of the union of all closed geodesics in X is compact;

(4) The non-wandering set NW(ϕt) of the flow ϕt is compact;

(5) ϕt is an Axiom A flow;

(6) Γ is finitely generated and the inclusion Γ → G is a quasi-
isometric embedding;

(7) Γ is finitely generated and for some word metric dΓ on Γ there
are c, C > 0 such that

dX̃(γK,K) ≥ c dΓ(γ, e)− C ∀ γ ∈ Γ,

where dX̃ is the Riemannian distance in X̃;

(8) Γ is hyperbolic and there exists a continuous, injective, and Γ-
equivariant map

ξ : ∂∞Γ→ G/P = ∂∞X.
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Definition 2.1. Γ is called convex-cocompact if the above conditions
hold.

Remark 2.1. Γ being convex-cocompact is not equivalent to ϕt being
an Anosov flow.

Example 2.2. • Every cocompact Γ is convex-cocompact.

• Every finite Γ is convex-cocompact.

• A free convex-cocompact group is called Schottky group. They
can be explicitly constructed using a “ping-pong argument”.

• Simplest example: G = SL(2,R), Γ ∼= Z, X̃ = H2, X =cylinder

2.2. Convex-cocompactness in higher rank.

Idea: Generalize Definition 2.1 to G of higher rank.

Problem: Which of Items (1) – (8) in Thm. 4 generalizes, and how ?

From now on no restriction on the rank of G.
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Theorem 5 (Kleiner-Leeb 2006). Let G1 ⊂ G be the product of all
simple factors of G of real rank 1 and G≥2 ⊂ G the product of all simple
factors of ranks ≥ 2. Let Γ ⊂ G be a Zariski-dense discrete subgroup
preserving a closed, convex subset C ⊂ X̃ and acting cocompactly on
it. Then Γ is a product of convex-cocompact subgroups of the rank 1
factors in G1 and a uniform lattice in G≥2.

=⇒ Items (1), (2) of Thm. 4 generalize uninterestingly to rk(G) ≥ 2.

What about other Items?

As before, let G = KAN , M = ZK(A), a = Lie(A), and a+ ⊂ a a
closed Weyl chamber.

Definition 2.3 (Quint 2005). Let C ⊂ a be an open cone.

• A point x ∈ Γ\G/M is C-conservative if there is a sequence
Xn ∈ a with Xn → ∞ such that x exp(Xn) ∈ Γ\G/M is
bounded and Xn

∥Xn∥ converges to a point in C.

• The C-conservative set ΩC ⊂ Γ\G/M of the Weyl chamber flow
on Γ\G/M is the closure of the set of C-conservative points.

Remark 2.2. If rk(G) = 1, there are only the two open cones ±̊a+ and

Ωå+ ∩ Ω−̊a+ = NW(ϕt).

Theorem 6 (Quint 2005). Let Γ ⊂ G be Zariski-dense.

• The following are equivalent:

(i) Ωå+ ∩ Ω−̊a+ is compact;

(ii) Γ acts cocompactly on the union F ⊂ X of a certain “natu-
ral family” of maximal flats of X generalizing the union of
all closed geodesics in rank 1.

• If the above holds, then Γ is a product of convex-cocompact sub-
groups of the rank 1 factors in G1 and a uniform lattice in G≥2.
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=⇒ The generalizations of Items (3), (4) of Thm. 4 to rk(G) ≥ 2
considered by Quint are uninteresting.

There are potentially many other ways to generalize (3) and (4)! Still,
Quint’s observation lead people to focus on the other Items in Thm. 4.

2.3. First definitions of Anosov representations.

2.3.1. Fundamental groups of neg. curved closed Riem. manifolds. Let

Γ = π1(M),

M a compact negatively curved Riemannian manifold.

=⇒ Γ hyperbolic.

Γ acts on the unit tangent bundle

M̃ = S1M̃ ⊂ TM̃

of the universal cover M̃ ofM , equipped with the lift φ̃t of the geodesic
flow φt on T 1M , which commutes with the Γ-action.

Let P ⊂ G be a parabolic subgroup, P̄ its opposite. Then

O := {(gP, gP̄ ) | g ∈ G}

is the unique open G-orbit in G/P ×G/P̄ . Have a splitting

T (G/P ×G/P̄ )|O = T (G/P )|O︸ ︷︷ ︸
=:E +

O

⊕T (G/P̄ )|O︸ ︷︷ ︸
=:E −

O

Let ρ : Γ→ G be a group homomorphism.

Γ acts on M̃ ×O by

γ · (ξ, gP, gP̄ ) := (γ · ξ, ρ(γ)gP, ρ(γ)gP̄ ).

R also acts on M̃ ×O by

t · (ξ, gP, gP̄ ) := (φ̃t(ξ), gP, gP̄ ).
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The two actions commute =⇒ the R-action descends to a flow ψt on

M̃ ×ρ O := (M̃ ×O)/Γ

The differential of the Γ-quotient projection maps the Γ-invariant and

R-invariant subbundles E ±O ⊂ TO ⊂ T (M̃ × O) to dψt-invariant sub-
bundles

F± ⊂ T (M̃ ×ρ O).
M̃ ×ρ O is a smooth fiber bundle with fiber O over the unit tangent
bundle

M := M̃/Γ = T 1M

via the projection
[ξ, gP, gP̄ ] 7−→ [ξ].

The flow ψt on M̃ ×ρ O lifts the geodesic flow φt onM.

Definition 2.4 (Labourie 2006). The homomorphism ρ : Γ → G is a
P -Anosov representation if there is a continuous section

s :M→ M̃×ρ O

such that s ◦φt = ψt ◦ s and on the vector bundles s∗F+ (resp. s∗F−)
overM the flow induced by φt is uniformly contracting (resp. expand-
ing) with respect to some (hence any) bundle norms.

2.3.2. General hyperbolic groups.

Γ hyperbolic group, (Γ̂,Φt) a Gromov-geodesic flow of Γ

In the above, replace (M̃, φ̃t) by (Γ̂,Φt) and (M, φt) by (Γ\Γ̂, ϕt),
where ϕt is the flow on Γ\Γ̂ induced by Φt:

Definition 2.5 (Guichard-Wienhard 2012). A homomorphism ρ : Γ→
G is a P -Anosov representation if there is a continuous section

s : Γ\Γ̂→ Γ̂×ρ O

such that s ◦ϕt = ψt ◦ s and on the vector bundles s∗F+ (resp. s∗F−)

over Γ\Γ̂ the flow induced by ϕt is uniformly contracting (resp. ex-
panding) with respect to some (hence any) bundle norms.
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Continuous flow-equivariant sections s : Γ\Γ̂→ Γ̂×ρ O

}
∼=←→{

Φt-invariant Γ-equivariant maps Γ̂→ O
}

Using the defining properties of Γ̂ one deduces:

Lemma 2.6. ϱ : Γ→ G is P -Anosov iff there are continuous maps

ξ : ∂∞Γ→ G/P, ξ̄ : ∂∞Γ→ G/P̄

such that for all (x, x′) ∈ ∂∞Γ
(2) one has (ξ(x), ξ̄(x′)) ∈ O and the

Gromov-geodesic flow Φt is exponentially contracting (resp. expanding)

on the bundles (ξ ◦ τ+)∗F+ (resp. (ξ ◦ τ−)∗F−) over Γ̂.

=⇒ Anosov representations generalize Item (8) of Theorem 4.

2.4. Properties of Anosov representations.

• rk(G) = 1: ϱ Pmin-Anosov ⇐⇒ ϱ(Γ) ⊂ G convex-cocompact.

• P -Anosov representations form an open set in the “representa-
tion variety” of all group homomorphisms ϱ : Γ→ G.

• Every P -Anosov representation ϱ : Γ → G is a quasi-isometric
embedding, but not conversely. Item (6) of Theorem 4 does not
generalize well to higher rank.

• Abundant (families of) examples.

• ϱ P -Anosov =⇒ X := ϱ(Γ)\G/K is topologically tame: There

is a compactification X of X̃ = G/K and a Γ-invariant subset

Xϱ ⊂ X containing X̃ such that ϱ(Γ) acts properly discontinu-
ously and cocompactly on Xϱ and the compact quotient

X := Γ\Xϱ

contains X as a dense subset.
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• Many examples of domains of discontinuity, i.e., open ϱ(Γ)-
invariant subsets U ⊂ G/H for appropriate H such that ϱ(Γ)
acts properly discontinuously (and possibly cocompactly) on U .
However, no examples of U which are always non-empty!

• Many more equivalent characterizations of being P -Anosov.

2.5. A minimalist definition. Let PΘ ⊂ G be a standard parabolic
subgroup associated with a subset Θ ⊂ ∆ of a chosen simple system
of restricted roots.

Definition 2.7. A finitely generated discrete subgroup Γ < G is PΘ-
Anosov iff there are constants c, C > 0 such that α(µ(γ)) ≥ c|γ|Γ − C
for all γ ∈ Γ and α ∈ Θ, where | · |Γ denotes the word length with
respect to a finite generating set.

Γ is then automatically hyperbolic.

=⇒ Anosov representations generalize also Item (7) of Theorem 4.
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2.6. Work in progress.

Items of Theorem 4 with colors:
Does not (seem to) generalize well to higher rank
Generalized by Anosov representations to higher rank

(1) There exists a non-empty Γ-invariant convex set S ⊂ X̃ on which
Γ acts cocompactly;

(2) Γ acts cocompactly on the convex hull Conv(ΛΓ) ⊂ X̃;

(3) The closure of the union of all closed geodesics in X is compact;

(4) The non-wandering set NW(ϕt) of the flow ϕt is compact;

(5) ϕt is an Axiom A flow;

(6) Γ is finitely generated and the inclusion Γ → G is a quasi-
isometric embedding;

(7) Γ is finitely generated and for some word metric dΓ on Γ there
are c, C > 0 such that

dX̃(γK,K) ≥ c dΓ(γ, e)− C ∀ γ ∈ Γ,

where dX̃ is the Riemannian distance in X̃;

(8) Γ is hyperbolic and there exists a continuous, injective, and
Γ-equivariant map

ξ : ∂∞Γ→ G/P = ∂∞X.

Q: What about the characterization of Item (5) in higher rank?

A: Work in progress, joint with Daniel Monclair and Andrew Sanders.
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